Design of Multilayer Perceptrons for Pattern Classifications

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Are Multilayer Perceptrons Adequate for Pattern Recognition and Verification?

This paper discusses the ability of multilayer perceptrons (MLPs) to model the probability distribution of data in typical pattern recognition and verification problems. It is proven that multilayer perceptrons with sigmoidal units and a number of hidden units less or equal than the number of inputs are unable to model patterns distributed in typical clusters, since these networks draw open sep...

متن کامل

Functional preprocessing for multilayer perceptrons

In many applications, high dimensional input data can be considered as sampled functions. We show in this paper how to use this prior knowledge to implement functional preprocessings that allow to consistently reduce the dimension of the data even when they have missing values. Preprocessed functions are then handled by a numerical MLP which approximates the theoretical functional MLP. A succes...

متن کامل

Discrete All-positive Multilayer Perceptrons for Optical Implementation Discrete All-positive Multilayer Perceptrons for Optical Implementation

All-optical multilayer perceptrons diier in various ways from the ideal neural network model. Examples are the use of non-ideal activation functions which are truncated, asymmetric, and have a non-standard gain, restriction of the network parameters to non-negative values, and the limited accuracy of the weights. In this paper, a backpropagation-based learning rule is presented that compensates...

متن کامل

Fast training of multilayer perceptrons

Training a multilayer perceptron by an error backpropagation algorithm is slow and uncertain. This paper describes a new approach which is much faster and certain than error backpropagation. The proposed approach is based on combined iterative and direct solution methods. In this approach, we use an inverse transformation for linearization of nonlinear output activation functions, direct soluti...

متن کامل

Entropy Minimization Algorithm for Multilayer Perceptrons

We have previously proposed the use of quadratic Renyi’s error entropy with a Parzen density estimator with Gaussian kernels as an alternative optimality criterion for supervised neural network training, and showed that it produces better performance on the test data compared to the MSE. The error entropy criterion imposes the minimization of average information content in the error signal rath...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of the Korea Contents Association

سال: 2010

ISSN: 1598-4877

DOI: 10.5392/jkca.2010.10.5.099